
UO-LISP NEWSLETTER

+--~--------------+ I January 1984 Vol. 1. No. 1
+---+

Premier Edition

The growing number of UO-LISP users has prompted Far West to
publish this newsletter to acquaint users with new software
being offered, provide tips on use of the system, and broadcast
bugs and fixes. Each issue will provide news of upcoming events
of interest to LISP programmers. A section will be devoted to
answering questions from users and as a special feature, each
issue will have a complete LISP program designed to illuminate
to some aspect of the UO-LISP system.

We encourage you to submit programs, questions, articles,
and news of coming events. Our close connection with Lisp means
that we are not always in touch with needs of beginning users.
Your problem may be one which has not occurred to us and an
explanation of its solution will be of benefit to the entire
community. Or perhaps you have a program or utility which is of
use to everyone. You will be a much more productive LISP
programmer if you can build on the tools provided by others and
do not have to •reinvent the wheel" for each new program.

New Software

Many improvements have been made in UOLISP since the release of
version l.5 for CP/M and the TRS-80. The interpreter has been
augmented, the number of support packages has doubled, and a
large set of example programs in LISP and RLISP have been
implemented. The following changes have occurred since version
l.S.

The Manual

Perhaps the biggest change has been to the UO-LISP User's
Guide. The new manual is well over 300 pages long and is divided
into 12 chapters. It includes new sections on the document
formatter, big and fixed numbers, the revised structure editor,
the utility packages, the macro packages, and the Little Meta
Translator Writing system. In addition, nearly every function in
the entire manual is now described with an example of its
operation. Since the manual has gotten so large, we have also
created a handbook which includes all of the functions in the
system, a synopsis of commands for the editors, text processor,

2

and other systems, and a list of all packages in the system. To
keep the manual size reasonable, we have also created a report
series for the application and demonstration programs.

Version l.14c Interpreter

1. COMPRESS, EXPLODE, and EXPLODE2 have been implemented.
COMPRESS takes a list of single character identifiers and
builds a lisp expression out of it. EXPLODE and EXPLODE2
create lists of characters from s-expressions.

2. The N2I function converts
identifiers. I2N converts
their corresponding numbers.

integers into single character
single character identifiers into

3. MACRO type functions have been implemented. MACRO functions
permit implementing WHILE ••• oo ... , FOR loops, data
structuring in LISP without overhead (when compiled).

4. DIGIT and LITER return T when their arguments are single
characters which are digits and letters of the alphabet.

S. Up to 4 disk files may be open at any time in any combination
of input or output. Two other channels are connected to the
CP/M print and read devices. The user can also install his
own I/O drivers on any channel through the use of the INSTALL
function.

6. The FLUID variable binding mechanism is implemented. FLUID
variables are like GLOBAL variables, but can be used as
function parameters or as PROG variables. They also permit
variable name communication between interpreted and compiled
code.

7. A backtrace on error mechanism is implemented. When an error
occurs, the contents of the ALIST and frame stack are
displayed.

8. The BPS1$ function displays the number of available
identifiers, free code pointers, str~ng space available, and
the amount of remaining binary program space.

9. The loader and compiler check for overrunning the binary
program space.

10. Packages which have been loaded by the fast loader can be
unloaded and their binary program space and code pointers can
be used for other packages.

11. A Coroutine mechanism has been implemented. This permits
executing up to 5 processes concurrently.

*12. The disk I/O routines permit random access files to be
used.

13. Many bugs have been fixed and many of the basic interpreter
functions have been recoded for speed and size improvement.

3

14. A short call mechanism permits the compiler to generate two
byte function calls for many functions with significant
savings in the size of compiled code (10%).

15. The garbage collector removes unreferenced identifiers from
the symbol table.

16. COND and LAMBDA now support an implied PROGN. The antecedent
of a COND or the body of a LAMBDA can be a set of
S-expressions without the necessity of adding a PROGN.

17. The PROGl function has been implemented. It is like PROGN,
but the value returned is the first of its statements rather
than the last.

18. The support functions EOCAR (equivalent to CEO (CAR ••)
••)), REVERSIP (like REVERSE but does so in place destroying
the original list structure), LEO, NEQ, and GEO.

19. The COMMENT function has been implemented as a way of saving
annotation in a LISP file.

20. The vector data type has been moved inside the interpreter.

21. Read macros and a read table are now supported.

The Compiler and Optimizer

1. The basic compiler optimizes calls to LIST that have 1, 2,
and 3 arguments to the equivalent functions NCONS, LIST2, and
LIST3.

2. Implied PROGN is supported in COND's and LAMBDA expressions.

3. The PROGl function is open compiled.

4. Improvements have been made to the LAP pretty printer and LAP
interface.

s. Lambda expresssions as functions are compiled. Thus:
((LAMBDA (X) (ADD! X)) 12) is compiled correctly.

6. Improvements have been made in the code generated by the
basic compiler.

7. The FLUID variable type is supported in compiled code.

8. The two byte call mechanism is supported by the compiler as
an option.

9. The optimizer does argument reordering to take advantage of
registers.

10. Functions are listed as they are compiled during the fast
load file generation process.

4

11. The compiler and interpreter have been fixed to allow
compilation of functions with more than 3 arguments (up to 63
are permissible).

RLISP

1. The terse printer is interfaced to RLISP.

2. Some improvements have resulted in a reduction in the size of
the RLISP code.

3. Big numbers and fixed numbers are supported in source code.

The Trace Package

1. The basic package has been simplified by
BREAK function and the output improved. The
interfaced to the output facility. The
function has been reduced.

the removal of the
Terse printer is
size of a-traced

2. An extended trace package implements tracing of FEXPR's as
well as assigments to variables. A program BREAK facility
permits selective tracing and environment examination at run
time.

3. An execution profiling package has
package lists the number of times a
during the execution of a program.

The Document Formatting Program LISPTEX

been implemented. This
function gets called

The document formatting package implements LISP based word
processing. The formatter does text justification, centering,
page numbering, index and table of contents maintenance, table
formatting, and switching between different fonts. This document
was formatted and printed by LISPTEX.

The Structure Editor

The structure editor has been completely rewritten. A file
package constructs and maintains multiple copies of the source
file by attaching a version number to the file name. More than
one file can be edited at any time. The structure editor
contains many new commands including the ability to perform
editing on more than one function or structure at a time. There
is a limited ability to maintain comments in the source file.
The editor also contains a character editor, a facility for
editing the individual characters of an atom or structure.

5

New Packages

Several new support packages have been implemented and many old
ones have been updated.

1. CP/M operating system support. This package includes a number
of routines which perform calls on the CP/M disk and basic
I/O routines. A second package implements more complex calls
and permits interaction with the CP/M filing system for
deletion and renaming of files as well as directory search.

2. Fast arithmetic, bit-logical operations, and random number
generator. This package contains routines for doing fast
addition, and subtraction as well as shifting and logical
operations on integers. A pseudo-random number generator is
implemented.

3. History saving read loop. This package maintains a list of
the commands that have been previously entered. These may be
examined, edited, and rexecuted.

4. Terse printer. This package complements the pretty printer
and can be used with the structure editor and the trace
package. It limits the amount of output from PRINT by
displaying only the top few levels of a tree structure and
the first few elements of an array or list.

S. Internal GLOBAL variables. This package implements named
access to many of the internal global variables used in the
system.

6. Macro packages. These packages contain a number of compiled
macros for advanced control and data structures in LISP. This
includes CASE, IF, FOR, REPEAT, and WHILE macros in the
control package, structure definition and assignment
functions in the data structures package, and some useful I/O
macros in a third package. The fourth pack~ge implements the
backquote facility for easy construction of macros.

7. Terminal drivers. This is a collection of routines to be
loaded with programs that require CRT screen operations. Each
terminal type has their own driver program. The source code
for the Televideo and ADM22 terminal drivers are included.

8. Sort packages. These two packages implement a list insertion
sort and a disk based merge sort so that large numbers of
items can be sorted into a disk file.

9. The LSED Screen Editor. This program edits LISP source
program files on a character rather than structure basis.

10. ZSO assembler package. This package is an extension to LAP
to permit all the ZSO instructions to be used.

·*11. File Transfer Program (FTP). This package permits you to
communicate with other UOLISP installations and with Far
West. The program includes an electronic mail facility, talk

facility, and the file transfer mechanism.

*12. Distributed LISP. This
and communication of
systems.

package implements
process between two

6

synchronization
or more LISP

*13. Franz LISP compatibility package. This package permits
Franz LISP programs to be written and tested. These can then
be moved to UNIX version of Franz LISP. Not all of Franz LISP
is supported.

14. Auto loading. This. package implements automatic loading of
functions within the lisp system. A second package implements
package swapping.

15. Low level debugging. This package is a
level DDT which permits examination
functions and contents of buffers.

byte and address
of compiled LISP

16. The Little Meta Translator Writing System is now available
for CP/M systems.

*17. PROLOG. The programming language PROLOG implemented in LISP
(contributed by Rabbe Fogelholm of the Royal Institute of
Technology, Stockholm, Sweden). This package permits the user
to create and debug simple PROLOG programs.

18. A package has been written to support the construction of
read macros.

*19. Cross reference program. This program takes a UO-LISP
source file and displays information about which functions
are called from where, and what GLOBAL and FLUID variables
are used.

20. The 'hunk' data structure is a fast byte vector. It is
useful for storing single bytes in a fixed length vector and
retrieving the value without a list search as in the UO-LISP
vector structure. This will speed up many applications by an
order of magnitude.

Educational Software

Far West is now offering two packages for those learning LISP.
These make UO-LISP look like the LISP presented in various text
books. Currently packages exist for 'LISP' by Winston and Horn,
and the 'LISP 1.5 Primer' by Clark Weissman.

* item is to be released in the near future.

Demonstration Programs

A number of demonstration programs have been implemented. The

7

source code for these are distributed together with a document
describing each one and examples of its use (where applicable).

1. The SNAKE game. A game for CRT's: the snake gobbles the
random numbers that appear on the screen and gets longer. The
operator controls movement with characters from the terminal.
The game ends when the snake runs into itself or the wall.

2. Othello. A game program which demonstrates some
vectors.
known to
strategy

The program is not very smart though it
win. The documentation describes the rules
used by the program.

uses of
has been
and the

*3. The NLARGE computer algebra system. This program accepts
equations and performs operations on them. For example,
(X+l)A2 is expanded into (XA2 + 2*X + 1). Bignums permit
(X+l)A20 to be expanded (we don't know what the limit is).
Polynomials can be added, subtracted divided, multiplied, and
differentiated with respect to any variable. The package also
includes some matrix manipulations to do computation of
determinants, matrix inversion and multiplication. The
program treats the algebraic operators as "objects• and is a
simple example of "object oriented" programming in LISP. A
demonstration program which runs about 10 minutes is
included.

4. Fruit world. A simple intelligent system shows how the Little
Meta Translator Writing System can be interfaced to a program
that knows about fuit and how to make inferences based on
this information. The input and output are English s~ntences.

S. Your Program. Far West is actively soliciting contributions
from users. These will either be published in the newsletter
or offered as part of the growing UOLISP program library.

00-LISP Bugs & Complaints

We hope to keep this section small but we won't be foolish
enough to deny that there aren't any such things around. The
following have come to our attention:

Version l.Sa,b only (TRS-80 Model I, III). The Little META
Translator Writing system has a problem running under version
l.Sa (not version 1.5 or before). The use of the sign in
the test-x- construct causes problems and the sample
distributed programs don't work. To solve this problem, edit
these files and place at least one blank after every minus
sign.

Version l.13-l.14b (CP/M system). Characters with a code less
than 32 are ignored by the input reader. Consequently
assigning entries for them in the read table will not work.
This has been fixed in subsequent versions.

8

Other News

FOLLK (Friends of LISP/Logo & Kids) is a recently formed
non-prof it Educational & Scientific Corporation based in San
Francisco. It publishes a quarterly newsletter with articles
describing LISP, Logo, and PROLOG. It also sponsors computer
camps, a hot-line for answering questions about LISP, Logo and
other AI languages, and monthly FOLLK-Meets. A subscription to
the newsletter is $7.50 and a FOLLK regular membership is $25.00
and a student membership is $15.00. FOLLK can be reached at 254
Laguna Honda Boulevard, San Francisco, California 94116,
(415)-753-6555. FOLLK is not connected with Far West in any way.

Coming Events

The 1984 ACM Composium on LISP and Functional Programming will
be held at the University of Texas in Austin on August 5-8,
1984.

EUROSAM '84 International Symposium on Symbolic and Algebraic
computation will be held in Cambridge, England on July 9-11,
1984.

Bibliography

In this section we will list recently published articles and
books of interest to the LISP programmer. We would also like to
print book and article reviews.

Marti, J., 'The Little Meta Translator Writing System•, Software
Practice and Experience, October 1983, pp. 78-xx.
Describes the Little Meta Translator Writing System by
presenting a syntax checker, an interpreter and a compiler
for a small programming language. Recommended reading for
Little Meta users (reprints are available on a first come
first serve basis from Far West).

Questions and Complaints from the Users

In this section we will present questions we have received from
users both over the phone and by letter as well as the best
answers we can give.

Can I reconfigure the data spaces for my own applications?
Answer: No. ZSO code is not very relocatable and not every
CP/M or TRS-80 system has a relocating linker. We have spent
considerable time tuning the data spaces so that most
applications will run without reassembling the system. The
8086 version of UO-LISP will be statically reconfigurable.
The zao system can be easily be reconfigured by Far West upon
request (please call us to discuss your needs). For example
we could create a version which permitted you to have 20
files open at one time, or a version with 32k binary program
space (at the expense of stack and dotted-pair space), or
most any other special request you might have, as long as it
will fit into 64k.

I'm getting really sick of seeing the CAR and CDR of NIL error

9

message.
There are two solutions to this problem. The easiest is not
to take CAR or CDR of an atom, usually this error is a
symptom of some other error. Some LISP dialects (Interlisp
and MacLisp for instance) do permit you to take CAR and CDR
of NIL, but not other atoms. If this style of programming
appeals to you, simply create a special CAR and CDR which
check for this special condition {don't forget the composites
too) :

(DE CAR!* (x) (AND (PAIRP x) (CAR x)))
(DE CDR!* (x) (AND (PAIRP x) (CDR x)))

Programs

In this first issue we include the following interesting
algorithm programmed by Julian Padget of the University of Bath
in England. It computes PI to as many decimal places as one
wishes to wait for using a method called •continued fractions•.
The following program can be run as is. The last lines computed
PI to 10 and 20 decimal places respectively. We have used this
routine to compute PI to 100 decimal places, but it takes about
30 minutes.

% Load the packages required.
(FLOAD •usEFUL")
(LOADF "MACROS" "RTABLE" "FIXED")

% l*PREC is precision to compute to, default=lO.
(GLOBAL '(l*PREC))
(SETO !*PREC 10)

% Define a read macro for big numbers.
(DRM ! I

(WHILE (DIGIT (SETO C (R1$)))
(WITH C L)
(INITIALLY (READCH))
(RETURNS (MROUOTE L))
(DO (SETO L {CONS (I2NO C) L))

(READCH))))
(DE I2NO (C) (DIFFERENCE (I2N C) 48))

% Compute PI for N iterations.
(DE PI (N)

(FOR (WITH AN2 ANl AN BN2 BNl BN TMPl TMP2)
(INITIALLY (SETO AN2 10)

(SETO ANl 11)
(SETO BN2 11)
(SETO BNl tl))

(FROM I 2 N)
(DO

(SETQ TMPl (BEXPT (BIGNUM (SUBl I)) 2))
(SETQ TMP2 (BSUBl (BTIMES2 t2 (BIGNUM I))))
(SETQ AN (BPLUS2 (BTIMES2 TMPl AN2)

(BTIMES2 TMP2 ANl)))
(SETQ BN (BPLUS2 (BTIMES2 TMPl BN2)

(BTIMES2 TMP2 ·BNl)))
(SETQ AN2 ANl) (SETQ ANl AN)
(SETQ BN2 BNl) (SETQ BNl BN))

(RETURNS (!$QUOTIENT
(BTIMES2 t4 (CONS 0 AN))
(CONS 0 BN)))))

% Gets about .75 digits/iteration.
(!$PRINT (PI 16))
(SETQ l*PREC 20)
(!$PRINT (PI 28))

10

This program uses both the FIXED and BIGNUM packages as well as
the MACROS, RTABLE, and USEFUL packages. Note that FIXED
automatically causes the BIGNUM package to be loaded if it is
not already so. The read macro for defined by the call to DRM is
used to all big numbers to be used in the source. Any number
prefixed by an I will be converted into big number format. The t
read macro uses must of the features of the WHILE macro which is
defined in the MACROS package. The argument of the PI function
is the number of iterations to perform. The algorithm computes
slightly less than .75 digits per iteration.

Next Issue

The next issue will appear in April 1984 and features articles
on the structure editor and a Little Meta translator for · a
subset of LOGO.

